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Popular Summary: 
Land surface models (LSMs) are computer programs, similar to weather and climate prediction 
models, which simulate the storage and movement of water (including soil moisture, snow, 
evaporation, and runoff) after it falls to the ground as precipitation. It is not currently possible to 
measure all of the variables of interest everywhere on Earth with sufficient accuracy. Hence 
LSMs have been developed to integrate the available information, including satellite 
observations, using powerful computers, in order to track water storage and redistribution. The 
maps are used to improve weather forecasts, support water resources and agricultural 
applications, and study the Earth's water cycle and climate variability. Recently, the models 
have begun to simulate groundwater storage. In this paper, we compare several possible 
approaches, and examine the pitfalls associated with trying to estimate aquifer parameters (such 
as porosity) that are required by the models. We find that explicit representation of groundwater, 
as opposed to the addition of deeper soil layers, considerably decreases the sensitivity of 
modeled terrestrial water storage to aquifer parameter choices. We also show that approximate 
knowledge of parameter values is not sufficient to guarantee realistic model performance: 
because interaction among parameters is significant, they must be prescribed as a harmonious 
set. 
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Statement of Significance: 
This paper presents important guidance on the choices which must be made in order to simulate 
groundwater storage, which is a burgeoning area of hydrological modeling. 
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1. ABSTRACT We use Monte Carlo analysis to show that explicit representation of an 

aquifer within a land-surface model (LSM) decreases the dependence of model performance on 

accurate selection of subsurface hydrologic parameters. Within the National Center for 

Atmospheric Research Community Land Model (CLM) we evaluate three parameterizations of 

vertical water flow: (1) a shallow soil profile that is characteristic of standard LSMs; (2) an 

extended soil profile that allows for greater variation in terrestrial water storage; and (3) a 

lumped, unconfined aquifer model coupled to the shallow soil profile. 

North American Land Data Assimilation System meteorological forcing data drive the 

models as a single column representing Illinois, USA. We simulate 1997-2005. Observation- 

based monthly changes in state-averaged terrestrial water storage (dTWS) are used to evaluate 

the model simulations. 

The three versions of CLM are each run 22,500 times using a random sample of the 

parameter space for soil texture and key hydrologic parameters. Other parameters remain 

constant. 

After single-criteria parameter exploration, the schemes are equivalently adept at 

simulating dTWS. However, explicit representation of groundwater considerably decreases the 

sensitivity of modeled terrestrial water storage to errant parameter choices. We show that 

approximate knowledge of parameter values is not sufficient to guarantee realistic model 

performance: because interaction among parameters is significant, they must be prescribed as a 

congruent set. 



2. INTRODUCTION With the growing recognition of groundwater-atmosphere 

interaction as a potentially significant influence on spatial and temporal climate variability, 

researchers in the field of terrestrial hydrometeorology have focused increasing attention on 

improving the process representations of subsurface hydrology within land-surface models 

(LSMs). Existing process representations fall within three broad classes: (1) multi-layered, 

relatively shallow soil columns in which groundwater storage is implicitly represented because 

the model conserves mass (e.g., Oleson et al., 2004); (2) many-layered, deep soil columns whose 

lower boundaries are beneath the climatological depth to the water table (Koster et al., 2000; 

Maxwell and Miller, 2005); (3) multi-layered soil columns coupled to lumped, unconfined 

aquifer models (York et al., 2002; Liang et al., 2003: Yeh and Eltahir, 2005; Fan et al., 2007; Niu 

et al. 2007). 

Which of these methods best represents subsurface hydrology at a monthly time scale? 

We address this question for three different levels of parameter uncertainty: (I) when an optimal 

set of subsurface hydrologic parameters (e.g., percent sand, porosity, and specific yield) can be 

inferred from observations (the "ideal" case); (2) when no information about effective 

parameters can be obtained (the "worst" case); and (3) when only ranges for parameter values 

are known (the "real life" case). 

To ensure a fair comparison between methods, we isolate process representation as the 

primary source of uncertainty in model predictions. To limit input-data uncertainty, we employ 

the same meteorological forcing data and land-surface data for all model runs. We use a Monte 

Carlo approach to explore the impact of parameter uncertainty. Unlike calibration studies, the 

underlying goal of this work is not to identify the optimal parameter set; instead our primary goal 

is to evaluate and compare the added value of process representations. 



Three questions frame our analysis: (1) When given a surrogate optimal parameter set, 

which of the ways to represent subsurface hydrology results in the most realistic simulation of 

monthly change in terrestrial water storage? (2) When no reliable information regarding effective 

subsurface hydrologic parameters exists, which process representation most consistently gives 

the best performance? (3) Does knowledge of approximate values for hydrologic parameters 

guarantee reasonably accurate simulation of monthly change in terrestrial water storage? Our 

results will inform LSM model development; more important, they characterize the level of 

confidence that can be placed in LSM-generated hydrologic predictions, especially when 

observations are scarce. 

3. METHODS We use the National Center for Atmospheric Research's Community Land 

Model (CLM) (Bonan et al., 2002; Oleson et al., 2004; Niu et al., 2005) as the host model in 

which to test three methods for representing vertical water flow within the LSM soil column. The 

versions of CLM calculate surface and subsurface runoff (i.e., baseflow) as a function of 

topographic characteristics (Niu et al., 2005) and are identical except for the method that they 

use to represent vertical water transfer in the soil column. 

The first version of CLM (hereafter "SSOIL") uses the standard 10-layer, relatively 

shallow 3.43-m soil profile with topography-based runoff parameterizations (Niu et al., 2005). 

Because it conserves mass, the model implicitly represents groundwater dynamics; however, the 

true depth to the water table often exceeds the depth of the model's lower boundary. The second 

model (hereafter "DEEP") is identical to SSOIL except that it uses a 30-layer, 1 1.2-m soil profile, 

thereby extending the depth of the model soil profile to encompass a wider range of groundwater 

fluctuations. The third version (hereafter "AQUIFER) couples a lumped unconfined aquifer 



model to the standard 10-layer soil profile (Niu et al., 2007); it allows two-directional vertical 

water transfer between the unsaturated zone and the aquifer down a hydraulic gradient. 

We run each version of the model as a single column representing the state of Illinois, 

USA. Illinois covers approximately 146,000 km2. Crops and grass dominate the landscape. The 

climate is temperate and continental, and the topographic relief is relatively low. (See Changnon 

et al., 1988 and Yeh et al., 1998 for detailed descriptions of regional climate and hydrogeology.) 

Meteorological forcing and land-surface input data are the area-weighted arithmetic 

averages of high-resolution datasets over the state of Illinois. The forcing was provided by the 

North American Land Data Assimilation System (Cosgrove et al., 2003). A CLM-compatible 

land-cover dataset derived from Advanced Very High Resolution Radiometer and Moderate 

Resolution Imaging Spectroradiometer data (Lawrence and Chase, 2007) provides vegetation 

type distributions, biomass densities, and soil colors. 

A Monte Carlo approach allows us to extensively explore the range of model responses 

across parameter space. We run SSOIL, DEEP, and AQUIFER 22,500 times each. A unique set 

of subsurface hydrologic parameters is used for each run. We randomly sample uniform or semi- 

uniform distributions that span physically reasonable ranges of values for soil texture parameters 

and other hydrologic parameters (see Table 1 for parameters and ranges). Each Monte Carlo run 

is initialized with a spun-up dataset created by running each version of the model three times 

through the period 1997-2005 using default parameters. The first year (1 997) of each model run 

is not considered in the analysis to allow for additional spin-up. 

We assess the accuracy of model output using the statewide-average change in total 

column terrestrial water storage (dTWS), which we constructed fiom soil moisture and 

groundwater observations obtained by the Illinois State Water Survey (ISWS) (Hollinger and 



Isard, 1994; Robock et al., 2000) following the methods of Rodell and Famiglietti (2001). dTWS 

is suitable for evaluation because it integrates the hydrologic behavior of the landscape; it is 

directly observable everywhere on Earth using Gravity Recovery and Climate Experiment 

(GRACE) measurements (Chen et al., 2006); and it properly represents the land storage term of 

the coupled atmospheric-terrestrial water budget. 

Looking only at data from 1998-2005, we score parameter sets with the following metric: 

F = RMSEx (1 - r) (1) 

where RMSE is the root mean square error between modeled and observed dTWS: 

n = length of time series 

oi = observed dTWS at time i 

mi = modeled dTWS at time i 

and r is the correlation coefficient, defined as: 

n = length of time series 
n 

C(oi - aXmi - m) oi = observed dTWS at time i 

r = i=l 
112 5 = mean observed dTWS (lb) 

[k(oi -i7y2(rni - m y )  mi = modeled dTWS at time i 
i=l i=l m  = mean modeled dTWS 

We use F because it allows us to select parameter sets for which both the timing and amplitude 

of the modeled seasonal cycle match observations. We define the best parameter set as that 

which minimizes F; we use it as a surrogate optimum. 

4. RESULTS AND DISCUSSION 

4.1. When given a pseudo-optimum parameter set, which process representation is better? 

After the exhaustive parameter exploration, which mimics a single-criteria manual calibration, 

SSOIL, DEEP, and AQUIFER are equivalently adept at simulating monthly dTWS in Illinois 



(for all three parameterizations, 22.4 mrn 5 RMSE I 22.7 mm, and r L 0.72; see Figure 1 for 

exact values). Figure 1 compares observation-based dTWS with dTWS simulated by each model 

when it is given the best parameter set (i.e., the set that minimizes F, used in place of the 

optimum). 

When compared to the ISWS-derived observations, all three versions of CLM 

underestimate the peaks in the seasonal cycle; however, the seasonal amplitude of the simulated 

dTWS is consistent with the few available years of GRACE-derived observations (Chen et al., 

2006). Regardless of the uncertainty in observations, single-criteria analysis does not provide 

sufficient information with which to distinguish the overall performance of different models in 

simulating monthly dTWS. Future work will use automatic multi-criteria parameter estimation to 

Wher  explore the skill of the process representations. In the ideal case where observations exist 

and calibration identifies the optimal parameter set, the most computationally efficient model 

(either SSOIL or AQUIFER) should be used. 

4.2. When little is known about parameter values, which process representation is best? 

In the absence of specific information, modelers often use default parameter sets that are 

recommended by model developers. The left panel of Figure 2 shows the performance of both 

the default and best sets for each of the three models in a Taylor diagram (Taylor, 2000). 

Simulated dTWS using the best set has lower variance than the observed, and the improvement 

over the default set is marginal. The good performance of the default set is not surprising: as one 

of the few extensive hydrologic datasets in the world, ISWS observations regularly inform LSM 

development and default parameter estimations. 



For most locations where no reliable information regarding effective subsurface 

hydrologic parameters exists, we have no way of knowing whether the default parameter 

adequately represents effective parameter values. 

The right panel of Figure 2 shows which process representation most consistently gives 

the best performance. Each point represents a single model run with a unique set of hydraulic 

parameters. As points near the origin, the corresponding model skill improves. The plot shows 

the top-scoring 50% of parameter sets. Equal numbers of black, dark gray, and light gray points 

are shown. Of the three models, AQUIFER is the least sensitive to choice of parameters. Its 

robustness results from the buffering capacity of the augmented subsurface reservoir. When this 

buffering mechanism is absent, adequately simulating dTWS (regulating the flux of water 

leaving the soil column) depends entirely on accurate assignation of effective parameters. DEEP 

is slightly less sensitive to faulty parameter values than is SSOIL. 

Figure 3 compares the empirical cumulative distribution functions of parameter sets of 

the top-scoring 1% of runs with the distributions of the top-scoring 50%. Because the 

distributions of the top 1% differ from those of the top half, the parameters shown in Figure 3 are 

sensitive and merit calibration (Bastidas et al., 1999). More important, the gentler curvature of 

AQUIFER'S parameter distributions indicates a decrease in sensitivity to percent sand, percent 

clay, porosity, and maximum rate of subsurface runoff with respect to the other two models, 

whose cumulative distribution curves are sharper and steeper. Application of a two-sided 

Kolmogorov-Smirnov test confirms that the observed difference in sensitivity is statistically 

significant. 

In the foreseeable future, for large model domains, the scientific community is unlikely to 

be able to confidently assign subsurface hydrologic parameters either by direct observation or by 



calibration against subsurface hydrologic observations. Decreasing the sensitivity of model 

output to faulty parameter choices is therefore of utmost practical importance for improving 

model prediction capability. However, if, in nature, soil texture properties are the dominant 

control on regional subsurface hydrologic variation, then AQUIFER'S lower sensitivity to 

parameter values is likely problematic, and a significant increase in data collection and 

subsequent parameter estimation is warranted. 

4.3. Does knowledge of parameter ranges guarantee reasonable model output? 

The left panel of Figure 4 presents the top-scoring 1% of parameter sets for SSOIL and 

AQUIFER. Within the envelopes created by the top 1%, the best parameter combination is 

highlighted in black. In the right panel, scores corresponding to all parameter sets whose values 

fall within the ranges defined by the envelope created by the top-scoring 1% of runs are 

presented. Note that the right panel does not only show the scores of the "good" runs, which are 

clustered close to the origin. It also presents the scores of the runs that used parameter sets that 

are near those that resulted in the top-scoring 1% of simulations. For instance, "BAD" (in dashed 

lines, left panel) is a parameter set that, despite of having values within the envelope, performs 

very poorly (e.g., for SSOIL, RMSE - 0.2 m; for AQUIFER, RMSE - 10 m). Data for DEEP is 

not shown but is qualitatively similar to that shown for SSOIL. For most parameter sets, 

AQUIFER performs well. However, we show that there exist parameter sets that are adjacent to 

top-scoring sets but that result in extremely unrealistic model output. Because of parameter 

interaction, knowledge of approximate parameter values is insufficient to guarantee realistic 

simulation of dTWS. 



5. CONCLUSIONS AND IMPLICATIONS When a surrogate optimal parameter set is 

used, the model with the 3.43-m, 10-layer soil profile; that with the 30-layer, 11.2-m soil profile; 

and that in which a lumped unconfined aquifer is coupled to the shallow soil profile are 

equivalently adept at simulating monthly dTWS over the state of Illinois. When knowledge of 

subsurface hydraulic parameter values is limited, the coupled aquifer model makes CLM 

significantly less sensitive to errant parameter values; that is, the explicit aquifer representation is 

the most robust of the three parameterizations. However, knowledge of ranges for individual 

parameters is insufficient to guarantee reasonable simulated monthly dTWS. 
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8. TABLES AND FIGURES 

Table 1. Ranges and distributions of randomly sampled subsurface hydrologic parameters. 

* CLM calculates hydraulic conductivity and matric potential as a function of percent sand and 
percent clay according to the methods of Clapp and Hornberger (1978) and Cosby et al. (1984). 
Percent silt is loo-(% sand + % clay). 

-f Specific yield is a parameter used only by the AQUIFER runs, not by the SHALLOW or DEEP 
runs. 

Distribution 
uniform 
semi-uniform 
uniform 
uniform 

log uniform 

uniform 

Parameter 
Sand* 
Clay* 
Porosity 
e-folding depth of saturated 
hydraulic conductivity 
Maximum rate of baseflow 
(rsbmax) 
Specific yield-f 

Range 
5 to 90% 
5 to (100 - [% sand])% 
0.01-0.50 m3m-3 
0.1-100 m 

lx10-~~-1x10-~ m s-' 

0.01-0.25 



Figure 1. Observed monthly dTWS compared with that simulated by each model with its 
optimal parameter set. GRACE-derived data are shown only for reference (Chen et al., 2006); 
they were not used to score model output. 

Figure 2. Model performance. Left panel shows a Taylor diagram that includes scores from 
runs using default and best parameter sets. Right panel shows scores for the top-scoring 50% of 
runs. 

Standard deviation (mm) 



Figure 3. Empirical cumulative distribution functions for parameters used in top-scoring 
1% and 50% of runs. Distributions for specific yield and e-folding depth of hydraulic 
conductivity are not shown. 

rsbmax 

0 0.2 0.4 

porosity 

. .  . , . . 

DEEP 
AQUIFER - topl% 
top 50% 

Figure 4. Parameter sets corresponding to the top-scoring 1% of runs in normalized space. 
In objective space, scores of all the sets that fall within the envelope created by the top 1%. 
*BAD is not a member of the top-scoring 1%; it is the worst-scoring parameter set in the 
envelope. 

specific rsbmax porosity %sand %clay K,,, e-folding 0.; 
yield Parameter depth 


